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Abstract. The establishment of the Koala Genome Consortium in 2013 culminated in the publication 
of the first fully assembled koala genome. An international initiative involving 29 institutes across the 
globe, the publication has led to a much greater understanding of koala biology including knowledge 
on gene families putatively associated with detoxification of eucalypt leaves and the species’ ability to 
taste and smell plant secondary metabolites. Similarly, the genomic resource has enabled comparative 
assessments facilitating immunogenomics, population genomic analysis, and, for the first time, genome-
wide assessments of the koala retrovirus (KoRV). This summary outlines how the koala genome has 
increased our capacity to understand the genetics of KoRV—from a deeper understanding of KoRV viral 
subtypes and their recombinants to preferences for viral integration across the host genome.

Introduction
The koala (Phascolarctos cinereus) is an arboreal marsupial 
species that is endemic to the eastern Australian mainland and 
is the only living representative of the family Phascolarctidae. 
Having a unique biology, koalas are characterized by their 
evolutionarily unique physiological adaptations, such as their 
capacity to thrive almost exclusively on the consumption of 
eucalyptus leaves (Moore & Foley, 2000). In recent years, 
koala populations have experienced significant declines, 
which have been attributed to a range of factors including 
widespread habitat loss through land clearing and extreme 
climactic conditions such as those preceding and associated 
with the 2019–2020 summer bushfires (Phillips et al., 
2021). Susceptibility to various infectious diseases such 
as chlamydiosis and potential pathogens such as the koala 
retrovirus (KoRV), has created additional selective pressures 
that collectively have impacted most koala populations to 
some degree. The multifactorial nature of these declines 
has underpinned the complexities of managing the species, 
particularly as populations across the range are threatened 
through a combination of these different factors.

Considering these widespread declines, the Koala 
Genome Consortium was established with the purpose of 
generating the first high-quality koala genome assembly to 
be used as a resource by researchers to enact measurable 
conservation outcomes (Johnson et al., 2014). The 
culmination of this work offers multiple insights into the 
species (Johnson et al., 2018), but additionally provides 
a unique resource for comparative genomic applications, 
including the study of KoRV, found across the koala genome.

KoRV is a gammaretrovirus that is in the process of 
endogenization across the koala genome. Endogenous 
retroviruses (ERVs) descend from exogenous retroviruses 
that infected a host germline and have since propagated 
through vertical transmission via parent to offspring. While 
most ERVs colonized their host genomes millions of years 
ago, KoRV is estimated to have entered the koala germline 
much more recently (Ishida et al., 2015) and may spread 
through either vertical or horizontal transmission. Belonging 
to the Retroviridae family of viruses, KoRV replication 
commences with the conversion of retroviral RNA via 
reverse transcription into double stranded DNA within the 
host cell. The viral DNA subsequently becomes integrated 
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into the host genomic DNA and inevitably forms a permanent 
alteration that may be studied through the koala genome.

Advancing our knowledge of KoRV 
through use of the koala genome 

or koala genome resources
A mere 10 years ago, KoRV sequence diversity was assumed 
to be comprised of a single genetic subtype, endogenous 
KoRV-A (Quigley & Timms, 2020). However, the years 
that followed outlined a much more complex evolutionary 
picture of KoRV diversity, including the identification of 
various other subtypes, such as exogenous KoRV-B, which 
utilizes a different receptor binding domain (THTR1) than 
does KoRV-A (Pit1) (Xu et al., 2013). Wider adoption of 
high-throughput sequencing applications has also aided in 
our understanding of KoRV sequence diversity. While much 
of the KoRV provirus has remained remarkably conserved, 
most sequence diversity has been characterized across the 
env hypervariable region within the receptor binding domain 
used for mediating cellular infection (Chappell et al., 2017; 
Sarker et al., 2021).

Despite these advances, the lack of a koala reference 
genome has complicated the ability to pair positional 
information within the host with KoRV sequence diversity. 
KoRV analysis is further compounded by the limited diversity 
across viral genes and the repetitive Long Terminal Repeat 
sequences that are characteristic of retroviral elements, 
which make sequence assembly using short-read applications 
methodologically challenging. Thus, while KoRV diversity 
could be characterized, genetic insights into KoRV have 
been done so in aggregate, where KoRV reads (potentially 
originating from various KoRV proviruses across the genome) 
are mapped to a full length assembled provirus (Löber et 
al., 2018). In this manner, assembling specific KoRV-like 
proviruses, pinpointing the genomic location of these 
integrants, and studying the effects that these integrations may 
have conferred to the host, was not possible.

In the past five years, through the analysis and utility 
of the koala genome, several studies have expanded our 
knowledge of KoRV that would otherwise not have been 
possible without access to this resource. Notably, a study by 
Hobbs et al., outlined the first comprehensive picture of full 
length endogenous KoRV proviruses within a single koala, 
achieved through the analysis of long PacBio sequence reads 
later used to assemble the first koala genome (Johnson et al., 
2018). Analysis of the sequencing reads provided several 
additional insights including positional data on integration 
sites across the genome; the characterization of a newly 
identified endogenous recombinant retroelement termed 
recKoRV—the result of a recombination of an older ERV 
termed Phascolarctos endogenous element (PhER) and 
KoRV; and putative evidence of somatic cell integration by 
exogenous KoRV (Hobbs et al., 2017).

A key area of KoRV research and retrovirology that has 
flourished with access to koala genome resources is the study 
of viral integration sites. As a young retrovirus, integration 
site analysis of KoRV provides a unique opportunity to study 
retroviral endogenization within a mammalian host in real-
time. As a North-South cline to viral infection appears the 
most likely explanation for KoRV infection and expansion 
across the koala genome; the resource has provided 
opportunities to study KoRV integration patterns across time 
through the analysis of historical and contemporary museum 
specimens (Cui et al., 2016).

Previous studies have shown that retroviral genera display 
differing integration site preferences (Kvaratskhelia et al., 
2014). However, while integration into a specific genomic 
locus is random, retroviruses within the same family 
are statistically more likely to integrate within specific 
host genome features (Lafave et al., 2014). The recent 
development of a novel genetic assay termed sonication 
inverse PCR (SIP) has aided integration site analysis, 
particularly when coupled with long-read PacBio sequencing 
and comparative assessment to the koala genome (Alquezar-
Planas et al., 2021). The tool was successfully applied to 
comprehensively compare KoRV and recKoRV integration 
sites of an unrelated koala to the reference genome. In 
doing so, the role that older ERVs play in the disruption 
and remobilization of active retroviruses like KoRV at the 
earliest stages of endogenization within the koala genome 
was able to be examined (Löber et al., 2018).

Another application of viral integration site analysis 
made possible through comparative assessment to the koala 
reference genome is the study of pathogenesis. Insertional 
mutagenesis mediated through viral integration is one of 
several known mechanisms by which a retrovirus may cause 
cancer in its host. These integrations may result in several 
deleterious effects, including the disruption of oncogenes 
and the up or down regulation of gene expression (Bushman, 
2020). Like several other gammaretroviruses with known 
oncogenic capacity, KoRV has been long suspected of 
increasing cancer prevalence in koalas, particularly as 
lymphomas and leukaemias occur in high prevalence across 
the species. Through the analysis of paired healthy and 
neoplastic tissue from 10 koalas, a recent study by McEwen 
et al. (2021) provided the first supportive evidence of KoRV 
to underlie elevated cancer rates in koalas. The analysis of 
the paired tissue provided support for the identification of up 
to 172 integration sites uniquely found within the neoplastic 
tissue but absent in healthy tissue. Through the analysis, 
evidence for KoRV involvement in cancer development 
via different viral mechanisms are proposed (McEwen et 
al., 2021).

Conclusions and future perspectives
Through the analysis of koala genome reads, or the 
comparative assessments of proviral KoRV mapped back to 
the koala genome, the last five years has uncovered insights 
into KoRV biology, KoRV subtype diversity and the effects 
of viral integration on putative disease manifestations. With 
the decreased cost of sequencing technologies, the complete 
sequencing and annotation of hundreds of koala genomes 
across the species range is not far away. In fact, a large whole 
genome sequencing project lead by the University of Sydney 
with funding support from the NSW and the Australian 
Federal Government is presently underway and seeks to 
achieve this. Over the coming months, 450 koala genomes 
sequenced from across the species range will be uploaded 
into the public domain to support vital genomics research. 
The resource will enable key questions on koala biology, 
health and disease, and adaptations to climate change (among 
others) to be explored. The comparative assessment of this 
data is likely to provide further insights into KoRV that 
presently remain poorly understood. Retroviral infection 
processes, used by KoRV to propagate and spread, are one 
such area. Evidently, while some KoRVs are transcriptionally 
active, others are defective (as characterized by the disruption 
of open reading frames) but may still remobilise through 



 Alquezar-Planas: Koala genome 21

various mechanisms such as retrotransposition. Also, a 
virus in the process of endogenization is likely to propagate 
and spread using a broad range of mechanisms that differ to 
one that is exclusively exogenous or has seemingly reached 
equilibrium within its host. The complex evolutionary 
processes undergone by KoRV since its emergence and 
spread throughout the koala host is likely only to be fully 
uncovered through its analysis across multiple genomes, 
especially in related animals but also throughout its range. 
Another area of knowledge likely to continue to grow is 
our understanding of KoRV sequence diversity across the 
species. Recent technological developments have already 
enabled a much deeper understanding of viral subtypes that 
can be pinpointed to specific locations across the genome. 
Access to these same resources is likely to expand on how 
KoRV integrations may contribute to other diseases via 
immune modulation, either individually or in conjunction 
with other infectious agents. The years that follow are likely 
to provide fertile grounds for uncovering KoRV mysteries 
that would not otherwise be possible without access to the 
first koala genome.
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